Parker SMART Electrification Industrial Motor Assistant

How-to-Use Guide

Parker SMART Electrification Assistant

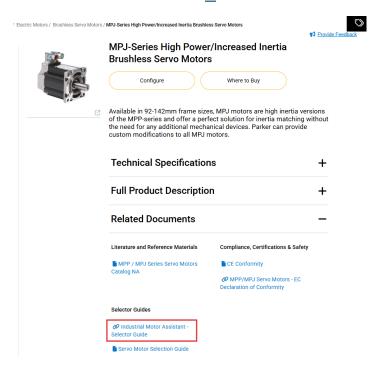
Please select your application

ePump Assistant

eMotor Assistant

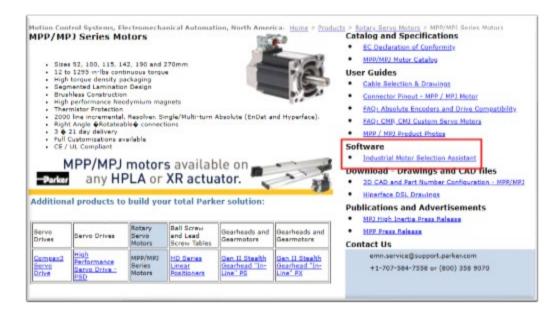
Contents

About this Guide	3
How to Find Assistant	3
SMART Electrification Guide	5
Step One	5
Subsystem Inputs A	5
System Inputs B	6
System Inputs C	6
System Inputs D	7
Step Two	8
Motor Selection A	8
Motor Selection B	8
Recommended eMotor Solution	9
Example One	10
Frameless Rotary Motor; Torque and Speed Given	10
Frameless Rotary Motor: System Inputs Torque & Speed Givens	10
Motor Selection	11
Motor Report	11
Example Two	12
Givens from Virtual Engineer	12
Garage Build Can Crusher	12
Equations	12
System Inputs	13
Motor Selection	14
Motor Report	14
Industrial Motor Assistant Overview	15
V1 Release	15
What it is	15
What it is not	15
Future State	16


About this Guide

The Industrial Motor Assistant is an intuitive, web-based selection tool accessible directly through the Parker SMART Electrification Assistant platform. Selecting servo motor products no longer requires software downloads or IT support but only an internet connection. This new tool works in harmony with Parker's Virtual Engineer Sizing and Selection Tool, our innovative platform for linear mechanics.

Virtual Engineer provides critical torque and speed parameters that can then be entered directly into the Industrial Motor Assistant by the user, ensuring accurate and efficient motor selection.

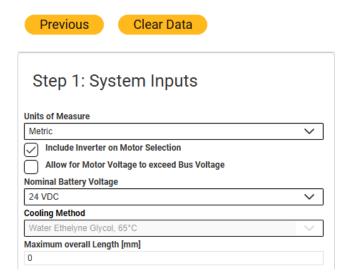

How to Find Assistant

- 1. Parker.com Product Pages for all Rotary Servo Motor Products
 - Expand Related Documents
 - Under Selector Guides
 - Example Page MPJ Motor Product Page
 - Other Product Pages:
 - Brushless Servo Motors: <u>BE</u>, <u>P</u>, <u>MPP</u>, <u>MPJ</u>, and <u>SM</u> Series
 - Frameless Servo Motors: K Series

- 2. Parkermotion.com Product Page for all Rotary Servo Motor Products
 - Under Software Subtitle Name "Industrial Motor Selection Assistant"
 - Example Page <u>MPP/MPJ Series Motors</u>
 - Other Product Pages:
 - Brushless Servo Motors: BE, P, MPP/MPJ, and SM Series
 - Frameless Servo Motors: K Series
- 3. Via Link here: Configurator

SMART Electrification Guide

1. Select the industrial motor assistant tab to gain access.


Parker SMART Electrification Assistant

Please select your application

Step One

Subsystem Inputs A

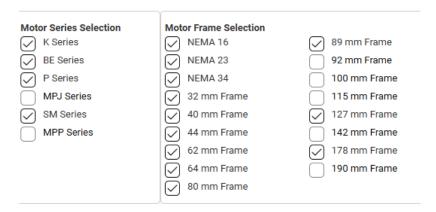
1. Units of Measure

• If Metric is selected your units will be Torque (Nm), Power (W) for inputs

- If Imperial is selected your units will be Torque (Ib-ft), Power (HP) for inputs
- 2. Include Inverter on Motor Selection
 - Function currently does not work
 - For Version 2 Release, we anticipate to have Servo Drives Included
- 3. Allow for Motor Voltage to exceed Bus Voltage
 - Ignore Function as this does not pertain to industrial motors

System Inputs B

- 1. Nominal Battery Voltage
 - This would be the application Bus Voltage Available from the Servo Drive
 - Voltage Non-Parentheses is Power Supply from Line Voltage
 - Voltage in Parentheses is Bus Voltage (Line Voltage $\sqrt{2}$)
 - This will affect the motor selection type
 - For Example: MPP/MPJ is unselected at 24VDC, and BE Series unselects at 460VAC (650VDC)
- Cooling Method
 - Ignore as this parameter is not used in the Industrial Selection Assistant Assumes Natural Convection and heatsink per catalog
- 3. Maximum Overall Length (mm)
 - Measures overall motor length; Does not account for added brake length.
 Please reference Catalog for added Brake Length

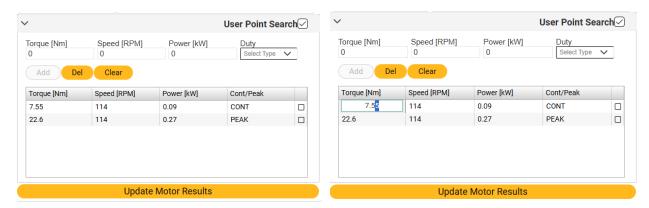

System Inputs C

Motor Series and Frame Selection:

- Choose All or desired Product Families
 - Motor Performance is based on 25C
 - Other Selection Criteria such as Ingress Protection, Feedback Device, Brake, etc. please reference Product Catalog
- Both Motor Family and Frame Size are dependent on catalog offering.

- Example: 190mm Frame is only available to MPP Product Family
- Example: NEMA 16 Frame is only available to BE and SM Product Family

System Inputs D

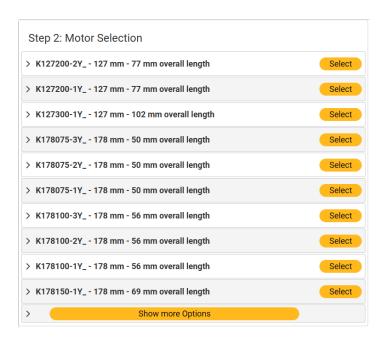

Torque, Speed, and Power Inputs

- Enter Continuous and/or Peak Performance Parameters
- Only two parameters need to be inserted, the third will auto calculate.
 - Example Input 7.55 Nm and 114 RPM and auto calculates to 0.09kW of Power
- Must Select Either Continuous or Peak Performance
- Must Select Add Button to input into table

Data in the Table

- Fields can be edited when in table by double clicking into the field you want to edit
- Rows can be deleted by selecting Check Box on the left then selecting Del Button

Must Select Update Motor Results to get motor selection availability



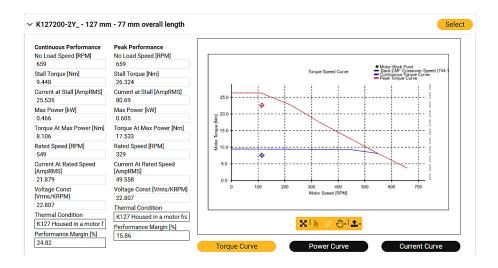
Step Two

Motor Selection A

Motors Provided are in list of weighting:

- 1. Frame Size (mm)
 - Selects Smallest Frame Size Available
- 2. Stack Length/Overall Length
 - Selects Shortest Length Available
- 3. Current Pull (Amps rms)
 - In order of lowest current draw

Motor Selection B


Verify:

- Frame Size
- Stack Length
- Continuous Torque Point
- Peak Torque Point
- Continuous Current Point

- Peak Current Point

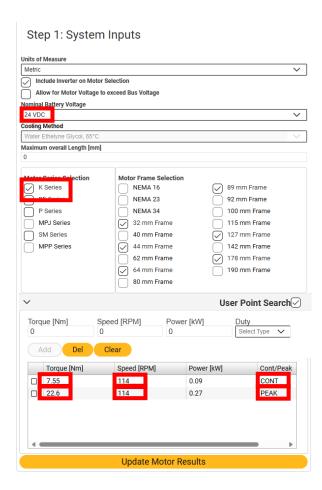
Finally Select "Select" Button in the top right corner

Recommended eMotor Solution

View Summary Sheet prints a summary sheet of the entire application. Example is pasted below.

	SMART E	ectrification Assistant				
-Parker	Project Sun	nmary	8/5/2025, 5:32:18 PM EST			
Contact Us						
Parker US Me	obile					
Electrification						
Electronic Mot		rol				
850 Arthur Ave						
Elk Grove Villa United States	aye, IL 60007					
	+1 (800) 358	3 9070				
	+1 (800) 356					
Motor Discl						
potential 3PS events as	This version of Printers 6-Purp and eMotor Sisting Assistant does not consider the motor's back-EMF, or account for finish-existenting or potential 3PG events associated with inventor staff motors. Please consult a Partier application engineer with assistance if you need to evaluate all potential operating conditions.					
eMotor Mo	del					
eMotor Part Nu	mber:	K127200-3Y_				
System Con	figuration	1				
Nominal Voltag	e:	24 VDC				
Current Limit:						
Thermal Condit with 0.250in thic		K127 Housed in a motor frame. Typically an unted to a 12in x 12in x 0.5in aluminum plate.				
Mechanical	Limits					
Max Length Ov	er All:	-				
Max Diameter:		178 mm				
			Change			
1						

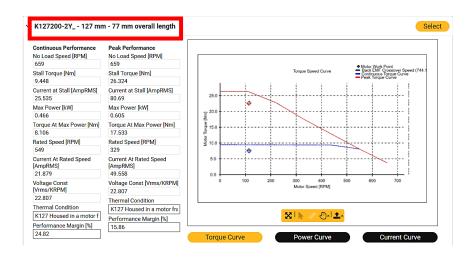
Example One


Frameless Rotary Motor; Torque and Speed Given

Givens

- 24 VDC Available
- Torque Continuous 7.5 Nm
- Torque Peak 22.6 Nm
- 114 RPM Continuous and Peak Conditions
- Frameless Motor Required
- No Diameter or Length Limitations

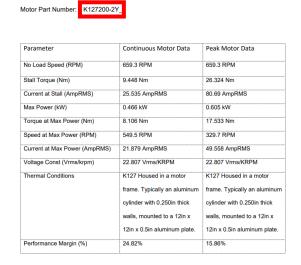
Frameless Rotary Motor: System Inputs Torque & Speed Givens


- 24VDC Voltage
- K Series (Frameless Motor)
- Selected All Frame Sizes of K Series
- Input both Peak and Continuous moves

Motor Selection

- Peak and Continuous Torque requirements show as red and blue stars under motor curves
- Continuous Current Pull is 17.5 Amps
- 127mm Diameter Kit Motor Frame Size
- 77mm Overall Length

Performance Output


Frameless Servo Motors Series | Parker NA

Parker-K-Series-Frameless-Kit-Motors-Brochure.pdf

Motor Report

Motor Performance Report shares critical Motor Parameters for Drive.

Example Two

Givens from Virtual Engineer

Sizing Completed by Virtual Engineer

Application: A garage can crusher

Givens:

- Up to 20 Oz cans of 6.5" (Stroke of 200mm needed)
- Cylinder Style ETH032 with Rod Guide and 30lbs steel plate attached
- Requires 100lbs of force to crush can
- 3 Seconds Downstroke, 3 Seconds Return, and 3 second Dwell
- 120VAC Wall Plug Available

Garage Build Can Crusher

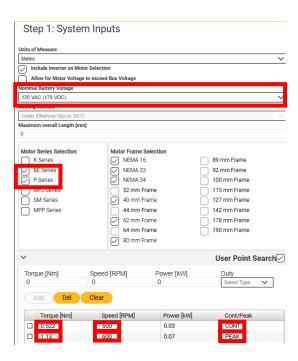
Equations

- Motor Speed
 - Motor Speed is Linear Velocity / Screw Lead
 - Linear Velocity (trap) = 1.5 * Distance / Time
 - M05 Ball Screw = 1.5 * 0.2m / 3 sec / .0.005m = 20 rps = 1200 rpm
 - M05 Ball Screw = 1.5 * 0.2m / 3 sec / .0.01m = 10 rps = 600 rpm
- Motor Nominal Torque
 - M05 Ball Screw RMS Torque = 71.18 oz in = 0.502 Nm
 - M10 Ball Screw RMS Torque = 73.86 oz in = 0.522 Nm
- Motor Peak Torque
 - M05 Ball Screw Peak Torque 128.95 oz in = 0.911 Nm
 - M10 Ball Screw Peak Torque = 160.19 oz in = 1.13 Nm

ETH032M05A1XXXFRN0200A

MOTOR REQUIREMENTS

Max Shaft Speed1200 RPMPeak Torque128.95 oz inRMS Torque71.18 oz inInertia Reflected from System to Rotor1.46 oz in²


ETH032M10A1XXXFRN0200A

MOTOR REQUIREMENTS

Max Shaft Speed600 RPMPeak Torque160.19 oz inRMS Torque73.86 oz inInertia Reflected from System to Rotor3.1 oz in²

System Inputs

- 120VAC Voltage (170VDC rectified)
- Housed Motor Lower the Current the better
- Selected All Frame Sizes of BE and P Series
- Input both Peak and Continuous moves
- Both Move profiles use about the same torque so lower speed is chosen

Motor Selection

- Peak and Continuous Torque requirements show as red and blue stars under motor curves
- Continuous Current Pull is 1.9 Amps
- 60mm Motor Frame Size
- 118mm Overall Length

Motor Report

- Motor Performance Report shares critical Motor Parameters for Drive
- Inertia in BE232 Catalog is 1.50x10[^]-4 in-lb-sec[^]2 = 0.0579 lb in[^]2 = 0.926 oz in[^]2
- System Inertia is 3.1 oz in^2
- Ratio = 3.1 oz in²/ 0.926 oz in² = 3.35:1 System to Motor Inertia Ratio

Performance Output Motor Part Number: BE232D

Parameter	Continuous Motor Data	Peak Motor Data
No Load Speed (RPM)	3406 RPM	3406 RPM
Stall Torque (Nm)	1.104 Nm	3.341 Nm
Current at Stall (AmpRMS)	1.981 AmpRMS	5.942 AmpRMS
Max Power (kW)	0.272 kW	0.365 kW
Torque at Max Power (Nm)	1.026 Nm	2.646 Nm
Speed at Max Power (RPM)	2527 RPM	1318 RPM
Current at Max Power (AmpRMS)	1.858 AmpRMS	4.72 AmpRMS
Voltage Const (Vrms/krpm)	34.136 Vrms/KRPM	34.136 Vrms/KRPM
Thermal Conditions	BE232 With 10x10x0.25	BE232 With 10x10x0.25
	Heatsink	Heatsink
Performance Margin (%)	27.42%	79.33%

Model Size	Symbol	Units	BE232D
St-II T	T _{cs}	Nm	1.10
Stall Torque Continuous 1, 2, 3		in-lb	9.8
Stall Current Continuous 1, 2, 3	I _{cs(rms)}	A _{rms}	2.0
De els Terresse	T _{pk}	Nm	3.34
Peak Torque		in-lb	29.6
Peak Current	I _{pk(rms)}	A _{rms}	5.9
Rated Speed 1, 2, 3	Sr	rpm	4965
D-1-17123	Tr	Nm	0.99
Rated Torque 1, 2, 3	Tr	in-lb	8.8
Shaft Power @ Rated Speed 1,2,3	Pout	kW	0.51
Current @ Rated Speed 1, 2, 3	l _r	Arms	1.8
Voltage Constant 4,7	Ke	V _{rms} /k _{rpm}	34.14
Torque Constant 4,7	K _{t(sine)}	Nm/A _{rms}	0.56
Resistance 4,7	R	ohm	7.72
Inductance 5,7	L	mH	35.8
Max DC bus Voltage 6	V _{mbus}	VDC _{max}	340
Max AC Voltage 6	Vs	VAC	240
Rotor Inertia ⁶	J	kg-m2	1.70-5
notor mertia *		in-lb-sec ²	1.50-4
Motor Weight 6		kg	1.41
Wotor Weight		lb	3.1

Industrial Motor Assistant Overview

V1 Release

What it is

Selection Guide Tool

- 25C Natural Convection Cooling Only With Heatsink (Reference Catalogs)
- Default Common 6 Voltage Supplies
- Motor Frame Size Selection
- Motor Series Product Family Selection
- Standard Winding Selection per Catalogs
- Current Limitation Selection

What it is not

Sizing Tool

- Requires user to understand Drive Bus Voltage
- Requires user to determine Inertial mismatching
- Requires user to understand duty cycles from move profiles
- Requires user to understand response times (Accel/Decel ramps)
- No Bearing Sizing
- No custom winding options

Future State

Revision 2 will introduce the following:

- Critical Motor Parameters
 - Voltage Constant (Ke: Vrms/krpm)
 - Torque Constant (Kt(sine): Nm/Arms)
 - Inertia of Rotor Shaft from Motor (J: kg-m2 or in-lb-sec2)
 - Resistance (R: ohm)
 - Inductance (L: mH)
- Parker Servo Drive Selection
 - P Series
 - IPA Drive
 - ACR7k Platform
 - PSD1 Series
 - Compax3
- Version 2 will have "Nominal Battery Voltage" change to "Nominal Voltage"

